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FOREWORD

The investigation reported herein was performed by Mechanical Technology Incorpor-
ated in fulfillment of Contract NAS 3-13473 for the National Aeronautics and Space
Administration, Lewis Research Center, Cleveland, Ohio. Mr. William J. Anderson
was the NASA Project Manager.

The computer program used to calculate the correction weights for the Exact Point-
Speed Influence Coefficient Balancing Method, and the analysis upon which the

program is based, were written by Dr. Jorgen Lund, Consultant to MTI.
The experimental data reported herein was acquired with the assistance of Mr.

Walter Spodnewski, Senior Technician. The computer calculations were conducted

by Mrs. F. Gillham.
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£ ABSTRACT
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A test program was conducted to confirm experimentally the validity of the Exact

Point-Speed Influence Coefficient Method for balancing rotating machinery, and to

Ty

assess the practical aspects of applying the method to flexible rotors.

g

Testing was performed with a machine having a 4l~inch (104 cm) long, 126-pound
(57 kg) rotor. The rotor was operated over a speed range encompassing three
rotor-bearing system critical speeds: two ''rigid body" criticals and one
flexvral critical. Rotor damping at the flexural critical was very low due to

the journal bearings being located at the nodal points of the shaft.

The balancing method was evaluated for three different conditions of initial

rotor unbalance. The method was found to be effective and practical. Safe (and

)
By

slow) passage through all the critical speeds was obtained after a reasonable

o~

number of balancing runs. Success of the balancing method was, in large part,

due to the accuracy of the instrumentation system used to obtain phase angle

T

measurements during the balancing procedure.
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SUMMARY

A test program has been conducted to obtaiu an initial assessment of the 'realworld"
effectiveness of the Exact Point-Speed Influence Coefficient Balancing Method for
balancing flexible rotors. This balancing method, including & digital computer
program for calculating balance correction weights, was analytically verified during
a previous NASA contract effort. The objectives of the herein reported test program
were to experimentally confirm the validity of the balancing method, and to assess

the practical aspects of applying the method to actual flexible-rotor machines.

The test program was performed with a machine having a 41-inch (104 cm) long,
126-pound (57 kg) rotor, which was supported by two self-acting fluid-film pivoted
pad journal bearings. The rotor had a three-msx:. ~orfiguration: one mass being
centrally located between bearings; the remaining iwc messes being overhung at

each end of the rotor.

'The rotor was operated at speeds up to 16 500 rpm. Three rotor-bearing system
critical speeds were encountered within this speed range. The firs. :wo critical
speeds were essentially ''rigid body ..iticals; the third criticai. ».  ch occurred
at about 11,000 rpm, was the first fiexurel critical of the rotor. iotor damping
at the flexural critical was very lo. due to the journal bearing- .=ing located

at the nodal points of the rotor. The test machine thus prev. <. an excellent

(severe) challenge for evaluation of the balancing methad,

Three conditions of initial rotor unbalance were investigated:
1. Rotor with residual unbalence (unbalance remaining after low-speed, rigid-

body balancing on a commercial balancing machine);

11. Rotor with substantial unbalance added along the rotor in an in-line out-
of-phase configuration (single axial plane, weights all on saeme side of
shaft centerline); See Figure 34.

1I11. Rotor with substantial unbalance added along the rotor irn an in-line out-
of-phase configuration (single axial plane, weights on overhung masses on
same side of shaft centerline but opposite from weights on central mass);
See Figure 39.
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For the second and third initial unbalance conditions, satisfactory rotur balance
was obtained for operation up to 80 percent of the third critical speed after the
first balancing run. (For the residual unbalance condition, operation up to 80
percent of the third critical was possible prior to the first balancing rum).
Rotor cperation through the third critical speed was achieved with a total of

two balancing runs for Unbalance Condition I, while a tota! of three balancing
runs were required for Unbalance Condition ITI. Although : .. ~acion through the
third critical was not demonstrated for Unbalance Conditicn LI, the test data
indicated tnat such operation would hav been achieved after six, or possibly

seven, balancing runs.

The results of this investigation definitely confirm the validity of the Exact
Point-Speed Iniluence Coefficient Balancing Method. It also appears that the
method is reasonably effective from a practical standpoint.* The condition of
strong in-line, in-phase unbalance (Unbalance Condition II) was the most
difficult condition with respect to achieving rotor operation through the

flexural critical.

The success of this balancing method is strongly dependent upon the accuracy of

the phase angle measurements taken during the balancing procedure. An instrumen-

tation set-up for obtaining satisfactory phase angle measurements was demonstrated.

It is also apparent that expeditious use of the balancing method, with respect to

selection cf balancing plares and speeds, is greatly enhanced by having some a

priori knowledge of the critical speed response characteristics of the rotor being

balanced.

Further evaluation of the effectiveness of the Exact Point-Speed influence Coeffi-

cient Balancing Method appears warranted, particularly with respect to :utors

which must operate through several flexural critical speeds.

*To some extent, a conclusion about the effectiveness of the balancing method must

be a relative assessment. In this regard, a final assessment of effectiveness
must await the availability of "effectiveness data" relative to other flexible
rotor balancing methods.
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INTRODUCTION

One of the axioms of machinery design is achievement of high operational perfor-
mance. 'Higher performance' is usually characterized by one or more of the fol-

lowing goals:

1. Higher power (transmitted or generated)

2. Reduced size and weight

3. Increased power (transmitted or generated) per pound of machinery
weight (hp/1b)

4. Reduced specific fuel consumption (1lb/hp-hr)

5. Higher efficiency

6. Higher reliability.

An important class of machinery to which these goals are applied, and to which

the herein reported investigation was specifically directed, is that in which

the principal kinematic motion is simple rotation of a shaft, or a system of
shafts. For this class of machinery, shaft speed and shaft size are almost always

intimately associated with achievement of the 'higher performance" goals.

With increasing frequency, design engineers are finding that the interactions
between higher performance goals and shaft speed and size are resulting in
machinery designs that require the rotating shaft assembly to operate in its
flexural (bending) regime. That is, shaft speeds and size are such that the
flexibility of the rotating assembly may significantly influence the dynamic
behavior of the assembly over some, or most, of the required operating speed
range. In other words, the shaft assembly cannot be presumed to behave as a rigid

body throughout the required speed range.

One of the major problems that has retarded development of 'flexible ro.or"
r.:hinery is the problem of balancing the shaft assembly for acceptable mechanical

*
operation throughout the required operating speed range. Whereas commercial

*The word "balancing", as used in this report, means reducing the distributed mass
eccentricity along the length of a shaft to the point where the synchronous whirl
orbits of the shaft, resulting from the mass eccentricity, are reduced to accept-
able values throughout the operating speed range. 3



Y

",-\“‘ -’:-'1.-. .

i

w

A
¥,
L
¥
S
T

N

balancing equipment is readily available to perform '"rigid rotor' balancing for
either production-line or for one-of-a-kind requirements, such equipment does not
exist for '"flexible rotor'" balancing. This, in large part, is due to the fac:
that the basic technology of "flexible rotor' balancing is still in the early
stages of formulation and evaluation. 'Rigid rotor' balancing technology, on the
other hand, is well established [1, 2, 3].*

The fact that the technology for "flexible rotor' balancing is not well established
does not mean that 'flexible rotor' machinery is rnot being built. There are, to-
day, large steam turbines in central power plants which run (at constant speed)
batw==zn their second and third flexural critical spceds. However, attainment and
miintenance of satisfactory rotor balance is a critical problem. Balancing of
these rotors is vsually accomplished by first performing 'rigid rotor" (low speed)
balancing. foilowed by "flexible rotor'" (design spe=d) balancing based on empirical
techniques which have evolved from years of prior c<xperience with this type of

machinery [4].

There are other types of machinery which could d=finitely achieve higher perfor-
mance goals if the shafts could be rcliably and economically balanced for opera-
tion in the "flexible" regime. For example, it has been shown that significant
weight, cost and maintenance savings can be achic-ved in helicopter power trans-
mission systems if the main rotor drive shafts could be supported by only two
bearings [5]“ However, this would require that the shafts be capable of oper-
ating smoothly through six to eight flexural critical speeds, a capability which
has not ye«t been satisfactorily achieved, due, primarily, to the balancing pro-
blem. The field of advanced aircraft gas turbines is rapidly moving into the
"flexible rotor" regime, and encountering significant problems in the process
[5,7]. Likewise, turbopumps, superchargers, and large industrial compressors
are entering the "flexible rotor'" regime as a result of the constant quest for

higher performance [8].

In recognition of the increasing need for rotating machinery which can operate
satisfactorily in the "flexible rotor' regime, the National Aeronautics and Space
Administration (NASA) has embarked upon a program to develop and evaluate the

* Numbers in brackets designate similarly numbered references listed on page 41 .
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technology of "flexible rotor'" balancing.* This report describes the results of
the second investigation performed within the program area. In the first inves-
tigation, a relatively simple '"flexible rotor' balancing method was analytically
evaluated [IO]u The method is based upon linear influence-coefficient deflec-
tion theory, and has been named the "Exact Point-Speed Influence Coefficient Bal-
ancing Method". The results cof the initial analytical evaluation of this method
were sufficiently promising to warrant an experimental evaluation of the method.

This report describes the results of the first experimental evaluation.

The Exact Point-Spee¢d Influence Coeffici-nt Balancing Method places very few re-
strictions upon the kinds of rotor-b=aring systems to which it is applicable. The
rotor may be rigid or flexible, the bearings damped or undamped. The test machine
used for the herein described investigation contained a "three-mass' rotor sup-
ported by self-acting tilting-pad journal bezarings. The bearings were lubricated
by a low-viscosity fluid to purposely minimize shaft damping (Dow Corning 200
Fluid; 0.65 centistokes at 77°F (ZSOC) ). The rotor was operat=d through its
first three rotor-bearing system critical speeds. The first two criticals were
essentially 'rigid body'" criticals. The third critical speed (the first "flex-
ural" critical) was particularly s=nsitive to shaft unbalancé since the journal
bearings were located essentially at the nodes of the response mode. Consequently,
the bearings did not contribute any effective damping at the third critical speed.
For all practical purposes, the third critical of the test rotor was undamped,

and hence presented an excellent (severe) initial test of the Exact Point-Speed

Influence Coerficient Balancing Method.

*The '"flexible rotor regime' is usually considered to be the range of shaft spceds
above 70 percent of the first '"flexural' critical speed of the shaft. However,

it should be recognized that the first "flexural' critical speed is not neces-
sarily the first critical speed of the shaft system. Shaft critical speeds should
always be computed taking into account the stiffness characteristics of the
bearing system. It frequently happens that the first two rotor-becaring system
critical speeds are 'rigid body" criticals. In this case, the third rotor-
bearing system critical speed becomes the "first'" flexural critical. (A discus-
sion of rotor-bearing system critical speeds is given in [9].)
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THEORY OF EXACT POINT-SPEED
INFLUENCE COEFFICIENT BALANCINZ METHOD

The general rotor shown in Figu.e 1 may be considered, for purposes of dis-
cussion, as a number of discrete masses, each dz in thickness. Each in-
cremental irass is located at eccentricity w from the rotor elastic axis, where
w is a vector function of distance alorg the rotor, and may thus be written
w(z). The rotor residual unbalance distribution is shown in Figure 1 in the
plane of the paper, but it should be remembered thoughout this discussion

that the distribution is;in general, three-dimensional. The net unbalance

for each axial element of the rotor may, 1f desired, be resolved into a sirgle
resultant unbalance moment vector Ep' This quantity may be expressed in the

form

U = pA S Gp(z)dz, (1)

where Ep has units of mass x length, and is referred to as the unbalance
moment of the shaft element. Here, p_ is the weight density of the rotor
material in the "pth" element, of whigh there are n such elements. Ap is the
cross-sectional area, and ;P (z) is the (three-dimensional) mass eccentricity
vector function. In Figure 1, the indicated integration is performed from the

left side of the element (z = 0) tn the right side (z = LP).

The actual distribution of residual unbalance in a rotor is initially unknown,
but it may be determined by examination of rotor vibration amplitudes and/or
dynamic forces which are transmitted to the bearing supports and thence to
the ground. A method for determining this unbalance distribution is dis-
cussed in this portion of the report. This information serves as the basic
input to the balancing computer program. Knowledge of the effective residual

unbalance moments Up at specified lo:ations allows the addition of correction

weights to nullify the residuals at critical points along the rotor.

Information on the dynamic properties and behavior of a rotor in its bearings

is of great importance in selecting both the number and the most effective
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locations of balancing planes. For instance, a iotor known to be operating in
its rigid-body regime requires, in general, only two balancing planes. A
f.iexible rotor, on the other hand, requires three or more balancing planes.

The exact number of planes depends upon the unbalance-excited mode shapes
assumed by the rotor. The mode shapes in turn are influenced by the critical
speeds which lie within or close to the operating speed range of the rotor.

A general rule is not yet available for determining the minimum number of planes
nec~ssary for balancing a flexible rotor. Consequently, some a priori knowledge
of the unbalance response characteristics of a rotor is of great assistance in
selecting the number and location of balancing planes. Final selection of the
balancing planes is usually a compromise based upon practical factors, such as

accassihility, associated with the rotor design.

Consider the rotor shown in Figure 1 to be mounted in flexible supports. Any

*
number of supports may be specified, and these supports may contain any combina-

,,.;"_“.

tion of mass, flexibility, and damping. It is required that rotor amplitudes
and phase angles be measured at each axial location, and at each rotor speed,
where low (theoretically zero) amplitude is ultimately desired as a result of

the balancing process.

Consider next a coordinate system £,n which is fastened to and rotatas with
the rotor at speed w. The rotating unbalance moments, Up, fixed in the £,n
coordinate system, cause rotor displacements which rotate with respect to the
fixed x, y coordinate system as shown in Figure 2. In this figure, the quan-
tities v and w_ are the £ and n components respectively, of rotor amplitude,
measured in the rotating coordinate system. At any point "j" along the rotor
axis, rotating displacements w, and W, may be converted to the stationary

coordinates by the relationship:

X, =W  CoS ut - W sin wt (2)

Iy 3

y, = w_ sin wt + w_ cos wt.
3 c s

3 3

* The present computer program is limited to 24 supports by the dimension
statements.
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The rotor amplitude in the rotating coordinate system may be expressed in com-

plex notation as follows:

w, = w + iw = w_e J, (3)

— A , _ i(ot + ¢]-)
F, j j - Yr°© |
j j

(4)

where i = \/—1, and where Wp is the rotor amplitude expressed in the fixed
h|
coordinate system. The quantities wo and wp are of course equal.

j h|
ﬁ Figure 3 shows the rotor in the rotating &, 0 coordinate system. The actual

distributed unbalance is approximated by n discrete unbalance moments distri-

buted aleng the shaft.

Vibration amplitudes and unbalance moments may be related by means of influence

coefficients "¢' in the following matrix equation:

o o AL F. B T
Yl 20 e T LY *

51 w = af /U 5
b5 { R) L] <P> (3)
T The qu are the linear coefficients which relate deflection at location j due to
-& unbalance moment at location p. It will now be assumed the number of balancing
'g‘ planes, into which both trial weights and final correction weights will be
B placed, is equal to the number of unbalance moments, 'n'".

As shown by Equation 3, the displacement quantities wR are complex, and for

any plane p:
- o = o i 6
i ip c,jp as,jp' (6)
?{
iy The unbalance moments UP may also be resolved into their components:

Uu =1 + 1 U (7)

es G O G G G e = o



e

where subscripts "c" and "s" denote the real and imaginary components, re-

srectively.

The order of [q¢] will be v by n, where v is the total number of displacement
elements in the Ve column matrix and n, as previously defined, is the number

of balancing planes. The number of displacement elements in turn is given by

v = mN (8)

m = number of stations along the rotor at which displacements are

measured, and

=2
"

number of balancing speeds at which m measurements are taken.

There are thus v = mN rows and n columns in the general [g] matrix. As will
be discussed later, this matrix must be inverted for solution of Equation 5.

The [o] matrix must therefore be a square matrix. That is, v must equal n.

1
i
I
I
I
 J—
i
|
|
I

LATI

Cases where this may not be the case are briefly discussed below.

Y
: 4,
!l'ﬁ!

The foregoing matrix equation may be written in long form as follows, where the

number of the balancing speed is indicated by a superscript.
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In Equatior (9), the subscripts on the elements of the displacement vector {w}
denote measurement locations along the roter, these being the locations at which
low vibration amplitudes are desired. It should be recalled that the capability
of obtaining low vibration amplitudes at certain specified points on the rotor

for selected speeds is the source of the name of the "Exact Point-Speed Flexible
Rotor Balancing Method." The subscripts on the U vector indicate balancing planes
in which trial weights are to be located during the balancing process and in

which fipal correction weights will be placed.

The balancing procedure involves solution of the foregoing equation for U,, U

|

.v«, Y, which are the components of residual unbalance in the '"n'" balancing
planes. The process involves measurement of amplitudes and phase angles, cal-
", "

culation of the influence coefficients "o ', and finally inversion of the & matrix

for solution of the U quantities.

In order to illustrate the foregoing mathematical technique, two measurement lo-
cations A and B will be selected. As the first step in determining the g-matrix,

the rotor is run in the as-received condition (residual unbalance) at speed w

1
At locations A and B, the (complex) rotor vibration amplitudes Y0 and V2o and
corresponding phase angles are recorded. These amplitudes are related to resi-
dual unbalance by the equation,
w
- 2 7 ful
o D o (DD . (D
Ao Al A2 . . An { U2
{ & = ) > (10)
(1) (1) (L) (1)
“Bo *B1 :y. © %n U
- J L J . "

Next, a trial unbalance moment, T, is inserted in balance plane 1, at angle 0,

measured from an axial reference plane. The angle f is usually made equal to

(1)

zero for convenience. Again the rotor is run at speed w

(1) 1

and Va1 and corresponding phase angles are recorded, thereby defining,

and amplitudes Vi1

11
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Subtracting Equation (10) from Equation (11) gives,

w {(n
¢ 1 Al

{1)
on

1)

Thus, two of the influence coefficients ir Equation (9) have been obtained.

o
) U

) > (11)
v,
"

125

Next |

¢« 7Y

the trial unbatanc- moment 1s inscert=d in baiancing plane 2 W, + T), and the

abov=z procedur= 15 re=pedted, yiz2lding,

(1) (1)
1) Zéz, -~ a0
%2 T
(iy _ . (1)
‘1) _ B2 “"Bo
%3 T .

All of the co=fficiznts may bz similariy determired.

pian= 'p,
(1) (1) (1)
o = Y_Ap wﬁgf
Ap T
(1) (1)
LA I ~ ¥ho
Bp T
12
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(13)

In gencral, for balancing

(14)
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where 1 = p < n and T is in balancing plane "p". It should be noted that T may

be different for each plane if desired. Thus, the first two rows of the a-matrix
of Equation (9) are defined. Now a second balancing speed W, is selected and the
above procedure is repeated. This yields the influence coefficients of the second

two rows of Equation (9):

(2) _ (2)
L @ _Cap Ao
Ap T (15)
(2) (2)
L @ _ e “Bo
Bp T )
This procedure must be repeated N = (%) times for n-even and N = (& ; l) times

for n-odd, where n is the number of balancing planes. Tn general, the following

equation must yield a whole number:

n

where

N = number of balancing speeds,
n = number of balancing planes, and

m = number of measurement locations.

When N as computed above is not a whole number it must be increased to the next
larger integer. Alternatively, n or m, or both, may be changed such that N
becomes an integer. When this latter course is chosen, all of the measured
amplitude and phase angle data (obtained at the m locations for N speeds) is
used for solution of Equation (9). For the former condition (N increased to the
next larger integer), all of the acquired data is not required for solution of
FEquation (9). For example, consider the case in which four balancing planes are
used for exact point-speed balancing at three measurement locations. Here,
N-4
largest integer). But this ylelds six (m x N = 6) sets of amplitude and phase

Two balancing speeds are thus required (N is increased to the next

information. Since the a-matrix wust be square (4 x 4), two rows must be
deleted. Two sets of data at the second speed may thus be ignored. Other

combinations are of couise possible.

It is apparent from Equation (9), and from the preceding discussion, that various

combinations of balancing speeds and measurement stations may be used in the 13
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balancing process, d:pending upon the numbter of balancing planes dictated by the
unbalance response caaracteristics of the rotor. For instance, with two balancing
planes, balancing may be performed for low amplitudes at twc important rotc:
locations at one speed. Alternatively, balancing at one important location at
each of two speeds is possible. With three balancing planes, several combinations
are possible, such as balancing at one location at each of three speeds. Equally
possible 1s balancing at two locations at one speed and one lccation at a second
speed. The combinations expand rapidly as the number of balancing planes is

increased to four, five, or more plana2s.

In the foregoing procedure, the w-vector and the a-matrix were defined numerically.
Inverting the o~matrix and forming the product {w} [c:t]—l allows the "effectiva"
unbalance U vector to be obtained. The selection of "n" balancing planes results
in an analytical consolidation of the distributed unbalance into r cifective
"local" values located at the balance planes. Fcr this reason, it is essential
to specify an adequate number of balance planes to represent the unbalances
causing the rotor to deflect in a particular manner. Each individual complex
unbalance, U , is thus the effect of the general rotor unbalance at the corre-
sponding balance plane p. Placing an equivalent but opposite unbalance (—Up) at
station p nullifies the effective residual unbalance at p. When such cquivalent
unbalances are placed in all selected balancing planes, the residual unbaliance

is nullified throughout the entire rotor, and the rotor is balanced.

The balancing computer program documented in [10] carries out the above operations
automatically, accepting measured displacement and phase ingles &~ iaput in
keeping with the procedure outlined. Program output consists of a number of
specified balance corrections, which are related to the stated angular reference
position (@ = 0) on the rotor by calculated phase angles. It should be recalled
that the program will not balance a rotor where any physical condition is
violated, e.g., cne balancing plane is always inadequate where an axial distribu-
tion of unbalance exists. Specific examples of balancing effectiveness upon the

number of balancing planes used are shown in Figure 4.

An improved version of the reference [10] computer program was use” for the bal-
ancing tests documented i1, this report. The improved program contains four

optionzl features for increased experim:ntal accuracy and convenience. These

features are as follows:

14
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1)

2)

3)

4)

& provision to read instrumentation calibration factors for amplitude and
phase angle measurements directly into the program. This feature eliminates
the need for manual conversion of instrumentation output voltages into dis-

placement and phase angle units.

A provision to include phase angle off-set. Such a feature allows for a non-
zero angle between the reference axial plane and the axial plane(s) containing
the trial weight holes. Thus, the calculated angular locations for the
balancing correction weights are relative to the actual trial weight holes in

each plane, decreasing chances for error.

A provision for specifying shaft out-of-roundness at the measuring locations.
Substraction of the synchronous harmonic of shaft out-of-roundness from dis-
placement transducer signals at the measuring stations may well make the dif-
ference between a rotor that can be successfully balanced and one that cannot.
Such a correction becomes increasingly important as the ratio of shaft out-
of-roundness to unbalance displacement amplitude increases. This feaiure was
not investigated in the course of the experiments described in this report,
because the out-cf-roundness of the test shaft was a small fraction of the

observed orbit amplitudes.

Provisions for trial weight runs with the trial weight placed first in one
(specified) radial position in each trial weight plane, and then placed 180
degrees opposite from the original position in the same axial plane. Trial
welght runs with the weight placed first in one location and then 180 degrees
away can result in increases in experimental accuracy. This is because the
averaging of two amplitude vectors obtained hy separate and opposing triel
weight placements acts to reduce the experimental error. (Most of the ex-
perimental results documented in this report were obtained by means of this

technique.)

15



FLEXIBLE ROTOR BALANCING TEST APPARATUS

The basic mechanical apparatus used for the herein described balancing tests had
previously been designed and built for turbulent journal bearing tests and for
rotor unbalance response measurements. The system was specifically designed to
accentuate rotor unbalance, thus providing an excellent vehicle for experimental

rotor balancing tests.

Test Rotor Configuration

The test rotor shown in Figure 5 was 4l-inches (104 cm) long and had a nominal
bearing diameter of 2.500 (63.5 mm) inches. The rotor (2)* was besically symmet-
rical about its mid-point and had a three-mass configuration with the two end
masses (3) overhung from each of the journal bearings. The center span between

bearings was 25 inches (63.5 cm).

The .enter mass, 6 inches (152.4 mm) in diameter by 6 inches (152.4 mm) long, was
integral with the shaft. The detachable end masses (3), also 6 inches (152.4 mm)
in diameter but only 3 inches (76.2 mm) long, were shrunk onto the shaft and
secured by locknuts (33). The weight of the center mass, exclusive of the 2.5~
inch (63.5 mm) diameter shaft section, was 36 pounds (16.3 kg); that of each end
mass, 19 pounds (8.6 kg). Total rotor weight was 126 pounds (57 kg). Rotor
material was nitrided Nitralloy 135 (modified).

The test rotor was equipped with a row of axial, tapped holes (34,35) on each side

of each mass. The tapped holes, 15 degrees apart, were on a 2.625-inch (66.7 mm)
radius from the center of the shaft. The holes were No. 10-32 in size, except
for two opposing 3/8-16 holes in each set which were used for trial weight place-

ment. The large and the small holes were in-line in all three rotor masses.

One of the end disks was equipped on its outer diameter with a narrow (1/4-1inch;
6.3 mm) reflective foil which extended for 180 degrees between the two large size
tapped holes. The other half of the circumference of the disk was painted

dull black. The circumferential mid-point position on the reflective strip was

* In this section numbers in parentheses refer to detail part numbers in Figure 5.
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the reference point on the rotor from which the angles for maximum dynamic displace-

ment at the other rotor stations were measured (phase angles).

The reflective segment extended (in the direction of shaft rotation) between the
two large trial weight holes. These holes were arbitrarily marked zero degrees
and 180 degrees, as shown in Figure 7. Consequently, the reference point (the
mid-point of the reflective strip) actually led the zero degree position marked

on the disk by 90 degrees. Therefore, 90 degrees had to be added to all phase
angle measurements, which was equivalent to making the reference position and

the zero degree position on the rotor coincident. (The same result could have
been obtained by rotating the reflective strip on the disk, until it covered the
arc 90-0-270 degrees). The test rig setup is shown in Figure €, and the relation-
ship amorg the reference mark, the trial weight locations, and the angular mark-

ings on the rotor is shown in Figure 7.

Test Rotor Support Bearings

The test rotor was radially supported by two identical tilting-pad type journal
bearings, shown in Figures 8 and 9. Each of the bearings consisted of four
radially rigid pads (6)*, with each pad extending over an 80 degree arc and with

a pivot position of 44 degrees (55 percent) from the leading edge. The pivot
configuration was that of a fixed sphere (integral with the pivot (8) ) in
contact with a cylindrical surface. The ball-in-cylinder pivot geometry allowed
the pad to tilt in both the pitch and roll directions. Thus, it permitted the
pads to track both translatory and conical shaft motions. The latter capability
is particularly appreciated in a test machine, because it allows the experimenter
greater latitude in setting the maximum permissible orbits without fear of contact

between the shaft and the edges of *he pads.

Pad length in the axial direction was 2.5 inches (63.5 mm) and the radial clear-
ance between each pad (at the pivot location) and the shaft was 0.00187 inch
(0.0475 mm). (Calculated journal bearing fluid-film radial stiffness as a
function of rotor speed is presented and discussed below). Horizontal and
vertical radizl stiffnesses are identical for the bearings which were oriented

in the load-between-pivots configuration.

*In this‘éection, numbers in parentheses refer to detail part numbers in Figure 8.
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The lubricating fluid for the journal bearings was Dow Corning 200, with a kinematic

viscosity of 0.65 cs at 77 degrees F (25 degrees C). The bearings were operated in a

flooded condition, with a temperature rise held to 10 degrees F (5.5 degrees C) maximum.

Axial positioning of the test rotor was provided by two externally pressurized air
thrust bearings located on both sides of the rotor center mass. Locations of the

thrust bearings are indicated in Figure 5 and in Section B-B of Figure 8.

Mechanical Features of the Apparatus

The test machine (Figure 5) was mounted on a structural steel base weighing approxi-
mately 3,200 pounds (1455 kg). 7+he base was isolated from the floor by rubber pads.
(These details of the base assembly are mentioned here only for reasons of documenta-
tion. There is no inherent requirement of the exact Point-Speed Balancing Method
relative to the type of machinery base used.,) Bolted to the top plate of the base
was an aluminum jig plate (20)* to which were fastened the individual housings (9 and
11) for the journal and thrust bearings respectively, and the proximity probe holders
(4) which held capacitance probes (31) used to measure motions of the end masses (3).

also mounted to the same plate was the electric drive motor (30).

The journal bearing housings (3) were equipped with seal rings (5) on both sides. Each
of these rings had a clearance seal adjacent to the bearing housing with an outboard
annular scavenging cavity. Outside the scavenging cavity was a labyrinth seal to re-
strict entry of air into the cavity. Bearing fluid leaking into the cavity wa pumped
back into the sump by two separate, electrically-driven pumps. A positive~displace-
ment pump driven by an air motor forced the bearing fluid through a water cooled "i1eat
exchanger and back into the journal bearing housings. Journal bearing supply pres-
sure was controlled to ensure a flooded condition. Journal bearing temperature was

measured by thermocouples welded to the back of the two lower pads in each bearing.

The drive motor (30) was a 30-hp, 30,000-rpm, 600-hz, 600-volt electric motor, powered
from a variable frequency generator set. The test rotor was coupled to the drive motor
by a crowned spline coupling (14,15,16). The teeth on the shaft part of the coupling
(15) were crowned so that the coupling could accommodate up to a 0.030-inch (0.782 mm)
radial misalignment between the axes of the motor and the test shaft without shaft

restraint.

*In this section numbers in parentheses refer to detail part numbers in Figure 5.
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Instrumentation

The instrumentation required for the balancing operation may be separated into

two groups according to function:

a) instrumentation for machine control

b) instrumentation for acquisition of balancing data.

Machine ~ontrol instrumentation consisted of pressure gages indicating thrust
bearing air supply pressure, journal bearing fluid supply pressure, drive motor
bearing air-mist lubrication pressure, thermocouples indicating journal bearing
pad and bearing fluid temperature, and a speed counter for shaft rotational speed.
To insure safe rotor operation under heavy unbalance loads, vertical and horizon-
tal capacitance-type proximity probes were installed in three locations along the
rotor axis for orbit indications. These orbits were monitored during test runs

through oscilloscope observation.

A total of five rignals were used for acquisition of the data needed for rotor balanc-
ing. Vertical rotor displacements_were measured with capacitanct-type proximicty’
probes and Wayne Kerr amplifiers at four locations along the rotor axis. The

locations of the proximity probes along the rotor axis are shown in Figure 10.

A schematic of the complete data acquisition system as it was used for the flexible

rotor balancing tests described in this report is shown in Figure 11.

The selection of the vertical plane instead of the horizontal plane for displacement
measurements was an arbitrary decision. At this time, no rule is available for
specifying a priori the required number of measuring stations along the axis of

the rotor for balancing by the method investigated. 1In fact, this topic was one

of the items under study. The computer program allows the substitution of data
obtained at different speeds for data obtained at different rotor locations, pro-
vided that the product of the numb.r of measuring sta“ions and the rotational

speeds at which trial weight data are taken is equal to the number of balancing
planes in which correction weights are to be added. For this test, four

measurement stations were used. The data from each station was always recorded
so that different combinations of speeds and measuring stations could be selected,

as desired, for computations of correction weight values.
19
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The fifth signal required for the balancing operation (commonly referred to as
the reference signal) was used tc relate a fixed angular position on the rotor
(the equivalent of the commonly used 'mark') to the angular position at which
maximum dynamic displacemert occurred at each of the four measurement sta~ions.
This angular relationship, called phase-angle, was obtained as follows: Half

of the circumference of one of the end masses was covered with a reflective foil
and the other half painted dull black. Each time the reflective arc passed
under an optical proximity sensor (MTI Fotonic sensor, Model KD-38) a constant
but adjustable voltage was generated. This square-wave signal was then ccnverted
to a sine wave in-a band-pass tracking filter (Vibration Instrument Company,
Tracking Analyzer 235 DS). The phase relationship between the converted refer-
ence signal and each of the <isplazerent sigrals {(analyzad on= 3t & time® was
measured in a phase meter (Model 933A, zlso made by Vibration Instrument

Company) .

The tracking analyzer (VIC 235 DS) was a dual channel model. In one channel,
the reference signal was converted to a sine wave, while in the other channel,
one of the four data signals was filtered to remove all frequency components
other than the first harmonic corresponding to shaft rotational speed. The
tracking (frequency) signal for the Tracking Analyzer was provided by the

square wave phase-angle reference signal.

Amplitude read-out was obtained directly frcm the Tracking Analyzer, which provi-
ded an output level meter from 0.003 to 10 volts rms full scale, adjustable in

seven steps.

Phase angle read-out was visually obtained from the digital phase-angle display
provided by the phase meter.

The data acquisition system, as described above, is sufficient to conduct flexible
rotor balancing. However, depending upon the mechanical characteristics of the
rotor system, it may be important, and at the same time difficult, to obtain am-
plitude data for all four probes at exactly the same rotational speed. It is
important to obtain the data at exactly the same speed if either the amplitude or
the phase angle is highly sensitive to small changes in the nominal value of

the data-taking speed, as for example, near an undamped shaft critical speed.

On the other hand, particular rotor drive controls, temperature effects, and
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damping may make iv difficult to hold rotor speed constant long enough to take

all required readings.

The requirement of nearly simultaneous readings was met for the test machine

through use of an available seven channel tape recorder. Five phase-tied channels
were used for the four displacement signals and the reference signal, while two di-
rect reading channels were used for data identification (voice and rotational

speed). By playing back the magnetic tape four times and switching from one displace-

ment signal to the next, data was obtained at nearly identical rotational speeds.

General Analysis of the Rotor-Bearing System

Some knowledge of the dynamic response characteristics of a particular rotor to
be balanced can be very valuable with respect to selection of bcth balancing
planes and measurement stations. Critical speed calculations, and associated
undamped mode shapes, will identify the number of criticals within or close to
the operating speed range of the rotor, as well as the degree of "flexibility"
of the rotor over the speed range. The mode shape plots can greatly assist in

the selection of balance planes, both number and location.

As a matter of practical preparation for the balancing process, the locations of

the proximity probes along the rotor axis should be at other than the shaft nodal
points as they occur in the vicinity of the balancing speeds. Should the probes

be at or near the nodal points, the low amplitude readings obtained may be a

source of error in the calculation.
For the test rotor-bearing system, the following calculations were performed:

a) Journal bearing stiffnesses, both horizontal and vertical, as a function

of rotational speed (Curve A, Figure 12).

b) Rotor critical speeds as a function of bearing stiffness (Curves B, C,

D, Figure 12).

c) Rotor undamped mode shapes at the calculated critical speeds for verti-
cal bearing stiffnesses of 105 1b/in (1.75 x 107 n/m) for each bearing

(Figure 13).
21
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The critical speeds of the test rotor-bearing system were obtained from Figure 12
at the points where the bearing stiffness curve (A) intersezts the rotor cri-
tical speed curves. The first and second rotor critical speeds are so close tc-
gether as to be nearly indistinguishable. They are basically rigid-body reson-

ances and are predicted to occur around 7000 rpm.

The third critical speed is predicted for the vicinity of 11,000 rpm with bcth
nodal points located within the length of the journal bearings (see Figure 13).

This critical contains, of course, significant shaft bending.

As a supplement to the theoretical analysis, exploratory test machine runs were
conducted. For these runs, coveriug the speed range between 3000 and 10,500 rpm,
rotor amplitude and phase angle plots were made. These plots indicated a speed
range between 7000 and 7500 rpm where rotor amplitudes, as well as phase angles,
showed a very noticeable and rapid fluctuation, apparently caused by the presence
and close prozimity of the first two rigid-body critical speeds. Rotor amplitudes
increased very rapidly at speeds above 10,300 rpm, thus identifying the approach
to the third critical speed. A smaller, but always finite and nearly comstant,
rotor amplitude peak at 10,210 rpm was tentatively identified as a housing reson-
ance. The phase angle plots obtained concurrently with the rotor amplitude data
were found to contain interesting and valuable data. They showed that phase an-
gle fluctuated by different amounts over the rotor speed range, and also that the
phase angle fluctuations were not the same at the four rotor stations at which
they were measured. Inspection of the phase angle plots permitted selection of
balancing speeds at those points where the phase angle readings were steadiest.
Phase angles obtained for the residual rotor unbalance condition are not shown

in this report. However, a set (for the four rotor measuring stations) of phase
angle plots covering the entire speed range up to 16,500 rpm, and therefore,
including the third critical speed at 10,960 rpm, are included as Figures l&
through 17 for the rotor in its balanced condition at the conclusion of Test

Case I. The corresponding amplitude plots for Statioms 1, 2, and 4 are shown

in Figures 18 through 20.

—_— - - ——— - e———— e m— - ———— -

- OO N O s tam e el G e wand wewl s G e el



s

— -vh;

TEST RESULTS

Test Case I - Rotor With Residual Unbalance

The first application of the Exact Point-Speed Influence Coefficient Balancing
Method to the test machine was aimed at reducing che original, residual unbalance
as it prevailed after slow-speed dynamic balancirg prior to assembly of the rotor
in its bearings. The test situation was very realistic, tecause no a priori
knowledge existed about the residual unbaiance distribution in the rotor. Even
though the rotor was well balanced by current standards, the first exploratory
run of the test machine revealed that passage through the third critical speed
(where essentially undamped rotor bending occurred) could not be attempted
without endangering the instrumentation probes and possibly the test machine as
well. Rotor orbits exceeding 0.010 inch (0.254 mm) in diameter were inadvertently
produced during the exploratory run, before it was realized that rotor excursions
increased extremely rapidly in the immediate vicinity of the third critical speed.
In subsequent runs, rotor speeds were generally not allowed to increase beyond

the point where orbits reached approximately 0.006 inch (0.152 mm) in diameter.

Initial Rotor Condition

The initial vertical rotor amplitudes for the speed range from 3,000 to 10,450 rpm
are recorded as curves 'A' in Figure, 21 through 24, which present amplitude data
for probe locations 1, 2, 3, and 4, respectively, as shown in Figure 10. These
curves, which were plotted 'on-line' during actual tests, indicate that an accept-
able level of dynamic balance was maintained up to 10,000 rpm as a result of the
initial, slow speed balancing performed on a commercial balancing machine. The
initial rotor amplitudes measured at thc¢ four measuring stations along the rotor
axis were recorded in this form to permit an assessment of amplitude reductions

as a result of the subsequent balancing effort. Subsequent results are shown as
Curves B, C, etc. in these and later figures. The availability of these amplitude
graphs and their complimentary phase angle plots also contributes to the success

of the balancing process itself. In certain frequency ranges, rotor amplitudes

and phase angles may fluctuate greatly as a result of small sariations in speed.

23



Experimental accuracy can be increased through selection of balancing speeds at

which b are well behaved.

aplitudes and phase angle

n

Sequence of Balancing Runs

The computer program for exact point-speed balancing of flexible rotors allows
for several alternatives and options in the balancing process. The chart in
Figure 25 provides a record of the selected alternatives and options, and all
sequential steps taken in the process of balancing the rotor having only resi-
dual unbalance. The first trial weight run with the rotor in its original con-
dition was followed by balancing calculation No. 1, and then by a .aeck-out run
with the calculated correction weights installed in the rotor. The resuvltant
amplitudes of the improved rotor are recorded as Curves B in Figures 26 through
29. Balancing calculation No. 1 was based upon trial weight data obtained at two
rotor stations (2 and 4, see Figure 10) and at two balancing speeds (6060 and
10,450 rpm). Trial weight plecement was performed in all four rotor balancing

planes.
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The results based upon this initial calculation wnre not considered satisfactory

in that large amplitudes remained near the third critical speed. Therefore, a new

R
o3 N

calculation of cerrection weights was made (Calculation No. 2), and the first set

<

F A LA
-~ é

Yo

of correction weights was discarded. The second calculation was based upon the
same data cbtained from the initial trial weight run, but included additional
readings from measuring stations 1 and 2. Only one rotor speed (10,450 rpm) was

utilized for balancing.
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The balance correction weights calculated in computer run No. 2 proved to be too
large for the tapped holes provided in the center disk nf the rotor. It was
noted however, that the correction weights calculated for the two sides of the
center 1isk were of nearly equal magnitude 4ud approximately 180 degrees out-of-
phase. Since the net centrifugal correction force from these weights appeared to
be small, a new correction weight calculation (No. 3) was made based on three

v balancing planes (rather than four), using three probe readings only. In this
calculation only one correction plane (instead of two) was specified for the

center disk.
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The reduction in rotor amplitudes obtained hy using the correction weights given
oy Calculation No. 3 was encouraging. The rednced ampiitudes are compared to
the original amplitudes in Figures 21 through 24, (Curves C and A respectively).
A new trial weight balancing run was, therefore, made with this first ret of
three-plane correction weights left in the rotor. For improved accuracy, the
new trial weight readings were obtained with the trial weight first pliaced in
the zero-degree position and then also in the 18J)-degree position in each
correction plane. Based upon experience gained in the first two balancing
attempts, several trial combinations of probe readings and speeds were used

for calculations of balance correction weights. Calculation No. 10, which was
for four rotor planes and one speed, was selected for correction weight installa-

tion.

A consecutive numbering of the balancing calculations performed during the entire
test series was maintained. Those calculations that are not listed in Figures 25,
34 or 39 were check runs on either the computer program, the effect of balance

plane selection, the effect of trial weight placement, or were dicscarded because

of errors in data processing.

The results of balancing calculation No. 10 were highly successful, permitting
sustained operation of the test machire at the third critical speed for the first
time, During the first run through the third critical speed, ro.or peak amplitudes
of approximately 0.0035 inch (0.089 mm) were recorded (Curve D, Figures 21

through 24). During this run, the rotor was held for approximately three minutes
at and near the critical speed, a circumstance which may have contributea to

the observation of larger amplitudes at the critical than were noted on subsequent
occasions, when the rotor tended to either tack off the third critical or pass
right through it. In all subsequent test runs through the third critical speed
with the rotor in this particular balance conditicn, peak amplitudes could not

be made to exceed one-hal® to two-thirds of those shown in Figures 21 through 24.
A similar experience was noted near the conclusion of Test Case III. There

again, larger rotor amplitudes were observed the first time the rotor passed
tkrough the ~hird critical speed with the newly computed correction weights
installed. Subseyuent runs through the critical with the same correction weights

always resulted in smaller resonant amplitudes.
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Trial weight balancing runs (No. 3) were again conducted with the rotor in its

best as-balanced condition. The trial weights were again placed in the zero-de-
gree and 180-degree positions in each of three balancing planes. Reversion to
three plane balancing at this point was deemed necessarv, because the amplitude
signals at the probe station nearest the bearing were considered to be too small

to be read accurately. The amplitude curves of the well balanced rotor, shown

by Curves D in Figures 21 through 24, have extremely steep slopes at the approach
to the third critical speed. Since it became nearly impossible to hold the rotor
at constant speed just below the thiru critical speed and still obtain amplitude
readings large enough to be meaningful, an attempt was made to take readings (trial

weight data) directly at the peak of the amplitude .urves at the third critical

speed.

Several balancing calculations utilizing the results of trial weight run No. 3
were made. Calculation No. 15 represented the last attempt to improve the resi-
dual unbalance condition of the test rotor still further. The calculations were
ba<. =~ upon trial weight data taken exactly at the critical speed. Even though
ont, very small correction weights were calculated, which appeared to be of the
right order of magnitude, no improvement in the rotor amplitude occurred when
these weights were placec in their calculated angular positions. In fact, the
peak amplitudes at the third critical became somewhat higher. The lack of suc-
cess in this final balancing attempt is attributed to the very rapidly changing
phase angle at the peak rotor amplitude, and to the inability of the current test
set-up toc hold rotor speed constant long enough to permit sim:itaneous reading

of amplitude and phase angle.
Test Results For Rotor With Residual Unbalance - Test Case I

Rotor balance improvement is usually defined in terms of either rotor amplitude

or bearing force reduction within the rotor operating speed range.

The test rotor for the herein described balancing experiments was designed to
operate over the speed range of 0-24000 rpm. However, the rotor was purposely

designed with nearly zero bearing damping at the third critical speed, which is

26
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just below 11,000 rpm. In any currently practical application, this rotor would
not be expected to operate at or above the third critical speed. If common com-
mercial balancing standards were applied, the test rotor would be limited to an
operating speed of approximately 80 percent of the third critical speed, or
9,000 rpm.

In order to present a meaningful comparison of the balance improvement as a re-
sult of application of the Exact Point-Speed Balancing Method to the test rotor,

tabulated rotor amplitudes at four rotor stations are presented for three

..

operating speeds (6,000, 9,000, and 10,960 rpm) for the initial unbalance condi-
tion, and 2fter the two successive balancing runs (Calculations No. 3 and No. 10)

which brought the rotor into its best balance conditin~n.
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Table I gives a listing of these values for Test Case I. The values in Table I

were extracted from Figures 21 through 24, where rotor amplitudes are plotted as

continuous functions of speed. Also shown in Table I are the calculated percen-

R A

e

tages in rotor amplitude reduction based upon each of the successive balancing

runs, and also upon all rums together (total reduction).

e |

Inspection of the tabulated results indicates that amplitude reductions along
the rotor axis were not uniform. In fact, near the bearing stations where ampli-
tudes were quite small to begin with, an increase in amplitude was registered

for the best balanced condition. The probable reason for this seemingly anoma-

!".v - '-m,

lous result cen be understood upon consideration of the objective and starting

e AP AP TSN T S,

s GEE WE N ey weoy e

point for this test case. Because of the relatively low initial urnbalance, fur-

R
LA
¥
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ther amplitude reductions were not mandatory at speeds below the third critical

.

speed. Instead, the objective was to reduce rotor unbalance until passage through
the third critical speed became possible. Therefore, all selected balancing
speeds were in the immediate vicinity of the third critical speed, where all re-
sulting amplitudes are considerably lower than the initial amplitudes. In addi-
tion, the steady-state peak rotor amplitude at the critical speed was reduced

from very large (unmeasured) values to those listed in Table I. For the rotor

in general, (i.e., considering all measurement stations in total), a slow but
steady reduction in average amplitude for all stations combined is seen for

each successive balancing run at each tabulated speed. Balance improvements are

most pronounced at the balancing locations at exactly the balancing speed, while
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increased amplitudes may occur &t other speeds and other rotor locations. The
very first attempt at balancing of the rotor with residual unbalance is 2n ex-
ample of this. There it was attempted to balance the rotor at two speeds (6060
and 10,450 rpm) but with proximity probes located only in the center and at the
right end of the rotor. After the balancing corrections had been made, the ro-
tor amplitude at the left end was much larger than before, at least up to the

higher balancing speed (see Figures 26 through 29, Curve B).

Test Case II - Rotor With In~Line, In-Phase Unbalance

Initial Rotor Condition

For the second balancing test case, the rotor was intentionally unbalanced. Sub-
stantial weights were attached tu the rotor at equal radii in four separate planes
at identical angular positions. At both overhung end masses, the unbalance weights
were attached on the side of the disk facing the journal bearing. Balance cor-
rection weights were applied to the outboard side of the end disk, and, for some
correction runs, at only one of the two sides of the center mass. This case was
thus designed to test the realistic situation in which balancing planes and un-

balance locations do not coincide.

Four unbalanced masses of 0.3%3 oz-inch (24.6 gr-cm) each were added to the rotor
in its best balanced condition at the conclusion of Test Case I. The angular lo-
cation of the unbalance weights was at 10 degrees. (See Figure 7 for angular ro-
tor locations.) Rotor amplitudes resulting from this unbalance addition are shown

in Figures 30 through 33, Curves A.

The amplitude curves (together with phase angle measurements which are uot shown)
indicate the rotor to be orbiting .n what is essertially a cylindrical mode (with
some rotor bending) in the frequency range between 5,000 and 10,000 rpm. The

average amplitude in this range corresponds fairly closely to the displacement of
the rotor gravity axis from the rotor axis of rotation due to the addition of the

total unbalance of 1.372 oz-inch (98.4 gm-cm).
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Sequence of Balancing Runs

The balancing runs for Test Case II were perfor .d in the sequence shown in Figure 34.
Attempts to balarce the rotor in four planes were unsuccessful on two occasions
(balancing calculations No. 16 and No.22) because the calculated weights at each end
of the center mass were too large to be accommodated in the tapped holes provided for
them. (The weights were 180-degrees apart, similar to the positioning encountered

in Calculation No. 2, in Test Case 1). Three-plane balancing was required in order
to obtsin the first testable set of correction weights. The resulting improvement

is shown by Curves B, Figure 30 through 33. The next set of correction weights

was obtained from four-~plane balancing which led to the improved rotor condition
indicated by Curves C, Figures 30 through 33. This balancing run reduced rotor
amplitudes at station 4 and 1. but csused increases at other rotor stations,

(see Table II - Second Balancing Run).

A rather interesting situation developed during the following trial weight run No. 3.
At the selected balarczing speed of 10,800 rpm, & large phase angle variation (+ 300)
was ercountered for the dynamic amplitude at the center disk location. This situa-
ticn, which only occurred when the rotor was run without trial weights, was observed
even though the amplitude readings were neither small nor rapidly fluctuating, thus
providing an exception to previous observations. The attempt to utilize the trial
weight data for calculation of correction weights for three balancing planes only,
and with the bearing location as the third measuring station, was not successful.
Vector plots of amplitudes and phase angles indicated that the calculated correction
weights would not yield any improvement, and no weights were made. Subsequent trial
weight runs were successfully implimented at a reduced speed of 10,700 rpm, thus
indicating that even relatively small changes in balancing speed in close vicinity

to a critical speed, may cause significant changes in the behavior of the phase argle.

4

Test Results For Rotor With In-Line, In-Phase Unbalance - Test Case II

The second test case differs substantially from the first in that a relatively
large initial unbalance was added to the rotor in Case II. At high unbalance
conditions, rotor amplitudes and phase angles are more constsnt with time, which

apparently leads to & very rapid initial unbalance reduction. For the first
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balancing run of the second test case, the reductions in amplitude at 3,000 and
9,000 rpm ranged between 81 and 88 percent.

After two additional balancing runs, the total amplitude reduction ranged between
80 and 94.5 percent. The numerical results for the improved rotor balance in Test
Case 1I are shown in Table II. Graphical plots of the reduced rotor amplitudes
are shown in Figures 30 through 33 (Curves D).

Table 11 does not contain any values for reduced rotor amplitudes at the third
critical speed (10,960 rpm). This is due to the suspension of balancing efforts
at the point where rotor dynamic behavior was similar to that noted at the start
of Test Case I (residual unbalance). The amount of additional effort required to
improve the rotor in Test Case II so that it would meet the criterion for running
at and through the third critical speed may be estimated by comparing the average
rotor amplitude after each of the balancing runs in Test Case I and Test Case II.

Table 1I-b shows those values extracted from Tables I and II.

TABLE 1I-b

AVERAGE ROTOR AMPLITUDES (MICRO-~INCHES) BEFORE AND AFTER
BALANCING CORRECTION RUNS IN TEST CASES I AND II

Test Cese 11 Test Case 1
Rotor Speed Original Correction Runs Original Correction Runs
_(rpm) Condition I  II 111 Condition 1 11
6000 1695 249 274 229 156 169 161
9000 1865 254 310 229 189 166 139

It may be concluded from the foregoing data that at least three or four more bal-
ancing runs would have beer required to attain the level of balance necessary to
pass through the third critical speed with this particular rotor,

st Case III - Rotor With In-Line -0f-Phase Unbalanc

Initial Rotor Condition

For the third and final test case investigated, the intentionally-added unbalance

weights in the rotor were shifted to create an entirely different unbalance situation.
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After removal of all correction weights applied in the course of the second test
case, the unbalance weights attached to each end disk for Test Case II were

moved by 180 degrees. Since all weights were of equal magnitude and at equal
distances from the rotor axis, each of the weights attached to one end disk bal-
anced statically one of the two weights located at the center disk. Moreover,
the weights at the end disks and the weights at the center disk were also located
symmetrically about the rotor mid point, thus balancing each other dynamically.
This kind of unbalance arrangement is totally unresponsive to «ny attempt at bal-
ancing in a conventional (rigid rotor) balancing machine. In fact, the occur-
rence of this type of unbalance is the predominant reason why rotors behave

flexibly and are thus required to operate away {rom their flexible=-shaft critical

speed.

The unbalance combination selected for this final tesc r=< .. again not an un-
realistic one. A typical example for this type of unbalance in practical appli-
cations may be visualized by assuming that the end disks were keyed to the test
rotor with one key each (in-line, in-phase) and that the two sides of the rotor
center mass were specified as balancing planes. This appears as a reasonable
specification whenever the end disks are representative of light wheels or gearé
which require no balancing. While the resulting rigid body balance may be satis-
factory, the bending of the rotor caused by the keyway unbalance at the end

wheels may be excessive near the shaft bending criticsl speeds.

Test rotor amplitudes for the initial rotor condition resulting from the addition
of in~line, out-of-phase unbalanced masses of 0.686 oz-in (49.2 gm-cm) on each
side of the rotor axis of rotation are shown as curves A in Figures 35 through
38. Rapidly increasing rotor orbits prohibited test machine operation at speedg

above 9000 rpm.

Sequence of Balancing Runs

The sequence of balancing runs comprising Test Case III is shown in Figure 39.

Partly as a result of increasing experience, this last test case was conducted

with fewer unrewarding trials. For all three correction runs, the same three
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probe lccations and balancing planes were used. For additional information, four-
plane corrections were also calculated for each run. For the first two such four-
plane calculations (No. 24 and No. 26), the computed correction weights again
turned out to be much too large for the tapped hnles provided in the center disk.
However, for the last calculation, weights were obtained of 2 magnitude comparable
to those calculated for three-plane correction. The selection of the correction
weights from calculation No. 28 (threc-plane correction) over those from calcula-

tion No. 29 (four-plane correction) for the final correction was arbitrary.

Test Results for Rotor With In-~Line, Qut-of-Phase Unbalance - Test Case III

The balancing effort applied to the test rotor with in-line, out-of-phase unbar
ance proved to be very successful. Values of initial and improved rotcr ampli-
tudzs, as well as the corresponding percentages, are shown in Table III. Contin-
uous plots of rotor amplitudes versus speed for Test Case III are shown in Figures
35 through 38, where curves A represent the initial rotor condition before bal-
ancing, and curves B, C, and D show the reduced rotor amplitudes resulting from
the first, second, and third successive balancing runs, respectively. The first
correction run reduced rotor amplitudes at 9000 rpm rotor speed by nearly 94 per-
cent. The following two correction runs reduced amplitudes by another 1.6 and

1.1 percent of the initial unbalance respectively.

While the last two reductions were significant, insofar as they put the rotor in
a balanced condition which permitted passage through the third critical speed,
the really significant amplitude reauction obviously occurred at the very first
balancing trial. This achievement contrasts with the result of the final balan-
cing in the previous Test Case II, where the initial reduction amounted to only
86.3 percent at 9000 rpm. While the difference of about 8 percent does not seem

large, it nevertheless becomes significant because it appears that subsequent
balancing runs reduce rotor amplitudes only by small percentages when measured

against the initial rotor amplitudes.

The consequence of this fact is well demonstrated by the different balance condi-
tions achieved in Test Cases II and III. The rotor passed the third critical
speed after the third balancing run in Test Case III, while it was estimated that
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at least 3 or 4 additional balancing runs (for a total of six or seven) would
have been required to reduce rotor amplitudes to comparable levels in Test Case
II1.

The reason for the much more drastic initial reduction in rotor amplitude in
Test Case III seems to lie in the different initial unbalance configurations
that were applied to the test rotor in Test Cases II and IXI. The predominantly
static unbalance in Test Case II seems to have caused very unsteady rotor oper-
ation, with considerable fluctuations in both rotor amplitude and phase angle
for very small changes in rotor speed. (See Figures 30 thruugh 33, Curves A).
In the vicinity of the balancing speed, the bent rotor in Test Case III showed
practically no amplitude or phase-angle variations, as evidenced by Curves A,

in Figures 35 through 38. The explanation for the smooth rotor operation in the
latter situation may well lie in the journal bearings. For the bent-shaft case,
rotor whirl amplitudes in the bearings were small because the bearings were loca-
ted very nearly at the nodal points. In Test Case II, the large static unbal-
ance cauced the votor to whirl in its bearings with amplitudes between one-half

to two-thirds of the bearing clearance.

A summary of rotor amplitudes, as they existed before balancing and after each
of the two or three consecutive balancing runs for each test case, is shown in
Table IV. Amplitudes have been averaged for all four rotor stations and the per-
centage reductions shown are the cummulative results of one, two, or three con-

secutive balancing runs applied to each test case.
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CONCLUSIONS

The experimental program documented in this report has shown that a flexible ro-
tor supported in journal bearings having very low damping capability can be
systemacically balanced for operation close to and through its third critical
speed (first flexural critical). The test apparatus 1s feit to have provided

a severe test of the theoretical balancing procedure.

The Exact Point-Speed  Influence Coefficient Balancing Method, which was used to
calculate ihe balance correction weights for the test rotor, has been shown tn
be capable of effectively reducing large rotor unbalainces. One unbalance correc-
tion run is usually sufficient to obtain smooth rotor operation up to 80 percert
of the first flexural critical speed of the rotor. To obtain safe (and slow)
operation through the first flexural critical, two to five add’tional unbalance
correction runs may be required, depending upon the initial condition of rotor
unbalance. For two of the three initial unbalance conditions investigated,

2, passage through'the  first flexural critical specd was achieved with a total of

three correction runs. For the remaining initia’ unbalance condition (in-line

by

;f in-phe-e unbalance), the test data indicated that six or seven correction runs

§: would have been required to permit passage through the third critical., This

fé particular unbalance condition was the one which most strongly excitad the

é% "rigid body" critical speeds of the rotor, and which produced the largest

ég synchronous whirl orbits within the beariags. There is sc.e indication that

%ﬁ large amplitude bearing orbits may interact with the rotor dynamics in suci: a

% way as to cause fluctuations in the amplitude and phase angle data used for cal-

X culation of the unbzlance correction weights. Such fluctuations can be a source
of error in the computed corrections.
The instrumentation system selected and assembled for the experiments reported
herein has proven itself reliable, easy to operate, and of adequate accuracy. In-

- herent mechanical  rotor-bearing system characteristics, rather than instrumenta-

ég tion sensitivity or accuracy, appeared to be the factor which limited tha amount

of balancing improvement which could be achieved in each rum.

The reported experir.r::; investigation has given every indication that the Erar..

Pcint-Speed Influeuce Luifficient Balancing Method is a reasonably effective
38
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method, at'least over-a speed range encompassing the fundamental "flexural"
critical speed of a rotor. Expeditious use of the balancing method can be
greatly enhanced by having an a priori knowledge of the dynamic response
characteristics of the rotor to be balanced. Such “nowledge can be obtained

using rotor-bearing system critical speed ccmputer programs which are readily
available.
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RECOMMENDATIONS

It is recommended that further evaluation of the Exact Point-Speed Influence
Coefficient Balancing Method be obtained by subjecting the method to a wider
range of test conditions. This can be done in several meaningful ways. For
instance, several additional initial unbalance configurations can be tested
using the present test-rotor configuration. One unbalance configuration might
consist - of a single unbalance weight placed at one end of the rotor, which would
tend to induce conical rotor motions. A second configuration might consist of
unbalance weights of different magnitudes, located in different angular positions
in three or four axial rotor planes, so as to force the rotor into a corkscrew
mcde of vibration. These two cases represent departures from the in-line unbal-

ance conditions considered to date.

A further test of the Exact Point-Speed method would be an' investigation of its
effectiveness on a different test-rotor configuration. For example, removal of
one of the end masses of the test rotor will alter drastically the dynamic be-
havior of the system.  Bearing loads and bearing dynamic properties will be
changed, resulting in different amplitudes of vibration at all points on the

rotor.

An important step in evaluation of the Exact Point-Speed Balancing Method (or
any balancing method) must be application of the method to rotor systems which
operate over a speed range encompassing several (perhaps up to four) flexural
critical speeds. Based on experiénce with and performance of the Exact loint-
Speed method to date, it appears that high priority for a truly supercritical

test evaluation is warranted.

Experimental  evaluation of the computer program option for automatic subtraction
of shaft out-of-roundness at the measuring stations should be conducted as part
of any further investigation into the practical usefulness of computer-assisted

flexible rotor balancing.
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APPENDIX A

TEST PLAN FOR BALANCING TESTS

1. urpose of Tests

i f—

To obtain experimental verification of the effectiveness of the computer program
for balancing of flexible rotors as reported under NASA Contract NAS 3-10926. The
scope of the tests described herein shall be in accordance with the statement of

work contained in Contract NAS 3-13473.

I1. Test Equipment

A. Rotor-bearing sys'em as refurbished for these tests under contract
NAS 3-13473.

B. Electronic instrumentation system consisting of capacitance probes (7)
with Wayne-Kerr amplifiers for rotor amplitude detection, an MTI Fotonic
Sernsor for reference signal generation, and an electromagnetic speed
pick-up with Hewlett-Packard counter for rotor speed measurements. A
dual channel tracking analyzer and a phase meter (235 DS and 933 A, re-
.spectively, by Vibration Instrument Company) are to be used for amplitude

and phase angle measurements.

II1I, Test Procedure

The test procedure shall be in accordance with the description of a typical test

cycle as described in Appendix C, 'Balancing Procedure." Specific test cases
shall be as follows:

A. Test Case I shall consist of the original, residual rotor unbalance as

it prevails after low-speed dynamic balancing prior to assembly of the
zotor in its bearings.
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B. Test Case II shall consist of the rotor in its best-balanced condition
(at the conclusion of Test Case I) with four additional unbalance
weights of equal magnitude located in a single axial plane on the same
side of the rotor. These weights shall be of sufficient size to pro-
dure significant orbit sizes, and shall Le located such that not all of

them are in planes selected for balancing.

C. Test Case III shall consist of the rotor in its best-balanced condition
(at the conclusion of Test Case I) with four additional unbalance
weights of equal magnitude added in a single axial plane. The unbal-
ance weights shall be placed at the 12 o'clock position in planes one
and four and in the 6 o’'clock position in planes two and three. The
unbalance weights shall be of sufficient size to produce significant
orbit sizes, and shall be located such that not all of them are in

planes selected for balancing.

For all three test cases, the rotor amplitudes shall be plotted as functions of
rotor speed prior to beginning of the balancing process and after conclusion of

each balancing cycle.

Rotor amplitudes of 0.00150-inch peak-to-pecak are considered to be too small for
accurate phase angle measurement with the present test equipment. Rotor amplitudes
of 0.000200-inch peak-to-peak will, cnerefore, be considered as a satisfactory
lower limit for balancing improvements. At the system critical speeds, or at

speeds corresponding to other rotor disturbances, the journal bearing clearance

(0.0035 inch) shall be considered as an upper limit to rotor vibration amplitude.

For all test cases, the selection of the number of balancing planes, the number of
data acquisition planes, and the number of balancing speeds shall be recorded. Any
other options in the balancing program exercised in the course of the experimental

test runs shall also be recorded.
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APPENDIX B

CALIBRATION PROCEDURE

The following probes and instruments were subjected to calibration checks prior

to test data acquisition:

a) proximity sensors (4)

b) Wayne-Kerr amplifiers for above sensors (4)

c¢) Tracking Analyzer (Model 235DS - Vibration Instrument Ccmpany)
d) Phase Meter ‘Model 933A - Vibration Instrume.t Company)

e) X-Y plotter,

The proximity sensors were calibrated in a bench fixture consisting of a probe
hold-down clamp and a flat steel disk mounted on a micrometer stem. Beginning
with an initial position whare the sensor tip is in ciose contact with the steel
disk, the micrometer was used to move the disk away from the probe. The incre-
mental changes in output voltage indicated by a Wayne-Kerr amplifier connected
to the sensor were recorded as a functica of micrometer travel. The relation-
ship of distance betweer. sensor tip and steel surface versus output voltage was
plotted and a "best-fit'" straight line drawn through the data points. Typically,
a capacitance-type sensor with a range of 0.010 inch (1 volt output for a probe-
to-surface distance of 0.010 inch) may have maximum deviation of approximately

2 percent from the linear straight line near the ends of tae specified distance

range.

The linearized voltage-distance relationship was determi: d for each probe and
subsequently utilized as irput constants for the Exact Point--Speed Balancing Com-

puter Program.

The following four calibration values were determined for the probes:
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Calibration Ccnstant

Probe No. (Mils/Vrms®
1 30.2
2 29.7
3 30.7
4 31.4

The Wayne-Kerr amplifiers were calibrated prior to the experiments by the manu-
facturers representative (MTI). A daily check of these meters required only

a bias adjustment to reset the meter output to one volt.

The Tracking Analyzer (235 DS) was received as a new and calibrated piece of
equipment just prior to the balancing tests. Daily bias adjustments were made
for the amplitude read-out and for the phase ang.> between the two channels.
The phase adjustment was accomplished by feeding a common oscillator signal to
both channels sad comparing the phase angle of the output signals in the phase
meter. The bias was adjusted, as required, to bring the phase difference to

Zero.

The Phase Meter (933 A) was adjusted for zero phase distortion between refer-
ence input and signal input with the same signal fed into both inputs. The
adjustment of the phase meter preceded, of course, the phase adjustment of the

Tracking Analyzer.

A valuable check on the proper interpretation »f the polarity and magnitude of
the phase angle indicated by the phase meter was obtained by displaying the
appropriate output signals from the 1racking Analyzer on an oscilloscope screen.
In this manner phase angles may be determined for checking purposes within 5

degrees of the values indicated by the phase meter.

The X-Y plotter was cclibrated in frequency for all amplitudes by using an
oscillactor to drive the tracking analyzer. During regular data plotting opera-
tions, amplitudes were continually spot-cnecked by vreadings and ccrresponding

hand notastions from the analyzer amplitude meter.
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No estimate is available on the overall dynamic accuracy of the instrumentation
system used in this experiment. However, certain liwmitations in the instrumen-
tation were recognized. For instance, the Phase Meter has a stated minimum
signal input requirement of 2.5 millivolts rms. This corresponds to approdi-
mately 0.000075-inch peak-to-peak rotor amplicude, when measured with capacit-
ance probes having a 0.010-inch linear range. If rotors with less initial
amplitude due to unbalance are to be balanced, either shorter range probes or

pre-amplifiers would have to be used.

The filter bandwidth selected in the Tracking Analyzer will also affect the
accuracy of the phase angle measurement, although on.y siightly. TIn general,
a decreasing filter bandwidth and decreasing signal ewplitude will cause a
slight deterioration in the phase angle measurement accuracy. At the 50 cycle
bandwidth setting (which was used for all experiments) the maximum phase angle
deviation did not exceed 1°. For the 5 cycle bandwidth setting, deviations of
+0.5 to -3.0 degrees have been recorded for the input voltage range of 100 to
2,5 millivolts rms.
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APPENDIX C

BALANCING PROCEDURE

The procedure for conducting a balancing test run was as follows:

1) The unbalanced test rotor was slowly, but continuously run up in

2)

3)

4)

5)

6)

speed until rotor deflections reached values which were not to bec
r.xceeded for safety or operational reasons. For the test rotor,
the maximum allowable deflection had been arbitrarily set as

0.0035 to 0.005 inch (0.089 to 0.127 mm) peak-to-peak. For several
locations on the rotor, vertical amplitudes were recorded on

magnetic tape for the complete run.

Rotor amplitudes and phase angles as functions of rotor speed
were plotted from magnetic tape by an X-Y plotter., From these plots,

suitable balancing speeds were selected.

A suitable trial weight was placed at the reference location on the
rotor in the first balancing plane. The rotor was then run up

in speed to the first pre-selected balancing speed. At that speed,
vertical rotor amplitudes were recorded on tape. If the rotor was
to be balanced at two speeds, it was then brought to the second
pre-selected balancing speed and again the vertical rotor amplitudes

were recorded on magnetic tape.

The above process (described in (3)) was then repeated with the
trial weight placed in each of the remaining balancing planes.

Steps (3) and (4) were then repeated with the trial weight placed

180° from the previous locations, but in the same axial planes.

From magnetic tape, amplitudes and phase angle readings were
obtained from the Tracking Analyzer (235 DS) and the Phase Meter
(933 A) respectively.
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7) The tabulated data was read into the computer (time sharing terminal)

for correction weight calculations.

8) Steel set screws were filed to match the calculated correction weights,
and located at the proper angles in the pre-drilled holes in the rotor
disks.

9) With the correction weights in place, steps (1) and (2) were re-
peated. Through comparison of the original and the balanced rotor

amplitudes, the effectiveness of the balancing effort was determined,

The whole procedure was then repeated until satisfactory rotor balance was

obtained.
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APPENDIX D

TYPICAL BALANCING DATA FOR A SELECTED CASE

Date of Test: 7-14-70
Trial Weight Run: Test Case III, Run 3
Rotor Balancing Speed: 10800 + 10 rpm

Measuring Rotor Ampllitude Phase Angle Trial Weight Trial Weight
i, Station (mV_rms) oz-in Location
.
‘" 1 .028 + 108 None
i 2 .025 - 72 None
3 .020 - 19 L None
o 4 .022 + 108 = None
o 1 .190 + 86 .0723
s 2 .160 - 92 .0723 Plane 1
3 .100 - 93 .0723 at 0°
W 4 .170 + 87 .0723
¥
i 1 .120 - 101 .0723
= 2 .120 + 77 .0723 }Pl.ne 1
i 3 .065 + 75 .0723 at 180°
4 .160 - 98 .0723
%*‘n 1 . 100 - 104 .0723
s 2 .090 + 67 .0723 Plane 2
Fiycs 3 044 + 61 .0723 at 0°
% L .100 - 103 .0723
LN
l% 1 .100 + 86 .0723
‘% 2 .100 - 98 0723 Plane 2
. 3 .070 - 98 .0723 at 180°
e 4 . 120 + 89 .0723
1 .086 - 203 .0723
2 .090 + 6o .0723 Plane 3
3 .040 + 63 .0723 at 0°
4 .092 - 102 ,0723
1 .120 + 85 .072)3
2 .110 - 98 .0723 Plane 3
3 .068 - 97 .0723 at 180°
4 . 120 + 84 .0723
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Measuring Rotor Amplitude Phase Angle Trial Weight
Station (mV rms) 0z-in
1 . 160 + 81 .0723
2 .150 - 96 .0723
3 .096 - 94 .0723
4 .169 + 82 .0723
1 . 140 - 100 .0723
2 .120 + 73 .0723
3 .068 + 74 .0723
4 .130 - 105 .0723

Trial Weight
Location

Plane 4
at 0¢

Plane 4
at 1809
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‘. APPENDIX E
' CALCULATED CORRECTION WEIGHTS FOR TEST BALANCING RUNS
l Test Calculation Balancing Correction Weight Correction Weight
Case No. Plane oz-in m-cm Angle (Degreesg)
l I 2 1 .1630 11.7375 1.3
| 2 .6265 45.1136 196.5
. 3 .6435 46,3378 15.5
l 4 .1130 8.1370 202.1
3 1 .0385 2.7723 57.9
' 2 .0455 3.2764 350.4
4 .0456 3.2836 335.9
‘ 10 1 .0120 0.8641 252.8
2 0144 1.0369 21.5
3 .0244 1.7570 212.3
; ' 4 L0141 1.0153 184.8
p 15 1 .0013 0.0936 ,245.8
7 2 .0173 1.2458 47.8
i l 4 .0038 0.2736 . 7.1
§ II 16 1 L0496 .« 3.5716 206.3
S ! 2 1.8859 135.8017 190.0
3 3 1.2431 89.5144 - 9.8
; 4 4008 28,8612 - 176.3
2 :
o i 18 1 .2402 17.2966 184.2
4 3 .6816 49,0813 187.6
g ‘ 4 .2075 14,6538 185.2
il 20 1 .0370 * 2,6643 241,2
. 2 . 1481 10,6645 246.3
l 3 .0704 5.0694 125.4
4 .1107 7.9714 225.8
21 1 .0754 5.4295 149.4
l 3 .0976 7.0281 132.2
) 4 . 0468 3,3700 68,5
' 22 1 .1410 10,1533 337.6
: 2 .8360 60,1995 185.3
g 3 .8751 63,0151 4,8
l 4 . 1484 10,6861 . 135,1
e
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Test
Case

III

Calculation
No.

23

24

25

26

27

28

29

Balancing

Plane

S W - W HWwN= S W= WA W=

£ WON -

Correction Weight

oz-in

.0368
.0385
.0297

.1213
<7542
1.2732
.3440

.2125
.5376
2794

.0184
.3616
. 3400
.0546

.0461
.0275
.0213

.0178
.0085
.0355

.0385
0471
.0484
.0534

gm-cm

2.6499
2,7723
2.1387

8.7374
54.3092
91.6819
34.7711

15.3019
40.1522
20.1193

1.3250
26,0385
24,4831

3.9317

3.3196
1.9802
1.5338

1.2818
.6121
2,5563

2,71723
3.3916
3.4852
3.8453

Correction Weight
Angle (Degrees,

190.8
238.7
31.1

211.5
227,8

32,2
187.2

204.6
7.1
184.8
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NOMENCLATURE

Specified rotor locations
Rotor cross-sectional area
Number of balancing speeds
Trial unbalance moment
Unbalance moment in plane p
VI

Length of rotor element
Number of measurement stations
Number of balancing planes
Balancing plane

Time

Number of displacement readings
Unbalance eccentricity

Cosine component of rotor amplitudz in

rotating coordinates

Sine component of rotor amplitude in

rotating coordinates

Rotor amplitude in fixed coordinates
Rotor amplitude in rotating coordinates
Fixed coordinate system axes

Distance along rotor

Influence coefficients

Rotating coordinate system axes

Rotor weight density

Rotor angular velocity

in.

OZ.“‘in.

OZ."in.

in.

sec.

in.

in.

in.
in.

in.

in.

lb/in.3

rad/-ec.

53



FIGURES

A

~r
wy

%&!.S»Y\.ﬂ;u.rir.ﬁ!v - . ‘

e

b v Tl SR RN P IORE (Y

Tiale b enl MY PR ALING .,i.,uw‘.’.\_ Ce
TRREE L LR




PRECEDING PAGE BLANK NOT FILMEL

y
Residual Urbalance
1 /Distribution
U v —yy——— .,
=2 _{ Uyy | U prl /1 Yoio | Upe3
. iV
z k_.
P-_*‘___.
QP
Fig. 1 Distribution of Residual Unbalance in a
Generalized Rotor
g
§
;‘
{ Fig. 2 Fixed (x,y) and Rotating (¢,n) Coordinate
. Systems

56

MT1-9498

i
L L




o~y

PRS0
e -

Aoy
Bt w e

P
Tavee T4

e ey

e N
Oeddhe 0. #

- o)

Balance Plane
I~

Balance Plane

4
e

Fig. 3 Approximation of Axially-Distributed Rotor
Unbalance by n Discrete Unbalance Moments

57

MTI-9497



Do Nl gl P aNeeawr st

PR 92

¢
'

58

15H= =

(a) Flexible four-disk rotor
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(¢) 1Inadequacy of three balance planes for
balancing near the second flexural critical
speed

Fig. 4 Dependence of Balancing Effectiveness on the
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